High Performance Fortran:
history, overview and current developments

Harvey Richardson
(hjr@think.com)

Thinking Machines Corporation

14 Crosby Drive, Bedford, MA 01730, USA.

TMC-261
Version: 1.4
April 24, 1996

Contents

1

2

Introduction

An Historical View

2.1

Data Parallel Developments

The High Performance Fortran Forum

The HPF Language

4.1
4.2

4.3

4.4
4.5
4.6

Array Mapping
Data Parallel Constructs
4.2.1 FORALL
4.2.2 The PURE Attribute
4.2.3 The INDEPENDENT Directive
Intrinsic and Library Procedures . . .
4.3.1 Intrinsic Functions
4.3.2 The HPF_LIBRARY Module .
Extrinsic Procedures
Sequence and Storage Association . .

Subset HPF

Current Implementations

Current Developments

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Future HPF Standards

Corrections, Clarifications and Interpretations

Tasking Issues
Implementations
Distribution of Data and Computation
[/JOIssues
Motivating Applications
Other Issues

Information Sources

Bibliography

12
13
14
14
15
15
16
17
18
19

19

21
22
22
22
22
23
23
23
23

24

24

1 Introduction

High Performance Fortran (HPF) is a programming language designed to support
the data parallel programming style. A primary design goal for HPF was that
the language would enable top performance to be obtained on parallel computer
architectures in a way that did not sacrifice portability.

The purpose of this document is to introduce the HPF language and place it
in context with previous developments. The current status of the HPF effort is
also described and details given of the implementations that are now available.

In the next section we briefly discuss the development of high-performance
computer systems and programming environments. Section 3 details the form-
ation and work of the High Performance Fortran Forum (HPFF), the body re-
sponsible for the definition and development of HPF. A detailed description of
HPF follows in section 4. The current implementation status of HPF is described
in section 5. The HPFF still continues and current issues are noted in section 6.
In the final section we provide pointers to further information sources relevant to
HPF.

For reasons of space this document assumes familiarity with Fortran 90, al-
though features of Fortran 90 relevant to data parallel programming are described
briefly. However some terminology is used that may require reference to one of
the Fortran 90 texts[l, 2, 3].

2 An Historical View

Since the dawn of the computer age there has been a demand for ever more
powerful computing systems. In part this has been met by evolution in com-
puter technologies — advances from computing mechanisms to electronics, to
valves, to solid-state circuitry, to integrated circuits, to ECL for example. In
the high-performance scientific market, notable advances have been made with
vector processors and exotic circuit technology (GaAs). The more cost conscious
high-volume sector has concentrated on integration and economy of scale. Re-
cent RISC processor designs are of very high performance compared to traditional
mainframe designs and even supercomputers. This is mainly a consequence of
the short design cycle for new processors.

Another trend has been the attempt to use n processors in a computing system
in the hope that an n-fold speed up can be achieved. Parallel computer designs
have developed from the early 1970s (ILLIAC IV[4]) to the many “massively
parallel” designs of today. The term massively parallel is often used loosely,
meaning anything from around twenty to many thousands of processors.

We now introduce some terminology which will be required later. High per-
formance parallel computer architectures can be categorised by memory access:

True shared memory Each processor has direct access to memory by use of a
shared bus or network. Such designs are not scalable due to bus or network

conflicts.

Virtual shared memory Each processor has local memory but may access re-
mote memory by use of global addresses. This access is accomplished by
low-latency messages sent over an interconnection network. Hence there is
non-uniform memory access (NUMA) since it takes longer to access more
distant memories.

Distributed memory Each processor has access to local memory via a local
address space, the processors are connected by some network. Access to
remote memories is only available via some message-passing system

These categories may overlap somewhat but serve as a useful classification.

Another distinction can be made between Multiple Instruction Multiple Data
(MIMD) and Single Instruction Multiple Data (SIMD) hardware. In the former
there are typically n complex processors executing up to n distinct instruction
streams independently. An SIMD machine has each (simple) processor operating
synchronously and obeying instructions from a single, central controller.

Most parallel machines are purchased in the hope that they can be used
efficiently on a range of problems. For this to be possible a given task must be
distributed onto the machine such that each processor can be kept busy on part of
the problem. It is also desirable that as little data as possible are moved between
processors since communication tends to be very time consuming compared to
computation. Often there is a trade-off between parallelism and communication.
Hence it is important that any programming environment gives adequate control
over the distribution and communication of data.

Due to the complexity of highly parallel hardware and its inherent difference
from a single-processor/single-memory architecture it is not possible to merely
use traditional programming languages and expect to achieve good performance.
Two programming paradigms have emerged and gained wide acceptance by the
user community (particularly on larger machines):

Message Passing In this paradigm, individual programs written in a standard
(serial) programming language are executed on each processor having ac-
cess to memories associated with each processor. A number of message
passing environments exist[5]. A common environment is the utilization
of a communications library callable from programs running on each node.
To transfer data between nodes the programmer can use send and receive
routines provided by the library. Often more complex collective operations
are also available.

Data Parallel In this paradigm a single program controls the distribution of,
and operations on, data distributed across all processors. A data-parallel
language will typically support array operations and allow whole arrays to
be used in expressions. The compiler is responsible for producing code to

distribute the array elements on the available processors. Each processor
is ‘responsible’ for the subset of the array elements which are stored in its
local memory.

(Of course there are other equally valid approaches: for example see the survey
by Henri Bal et. al.[6] and the more recent article by Frangois Bodin et. al.[7].
Both articles contain numerous useful references.) Message Passing applications
are only possible on MIMD hardware, data-parallel applications may be run on
MIMD and SIMD hardware. One potentially confusing term is SPMD (Single
Program Multiple Data) which has been used to mean different things in the
past. We will use the term SPMD to mean a programming style where the same
program is executed on each node of a MIMD system utilizing a message-passing
library for communications.

The aim of this document is to discuss data-parallel programming and in
particular High Performance Fortran so we now concentrate on these areas.

2.1 Data Parallel Developments

One definition of the data parallel programming style (used in the HPF standard[8])
is a style typified by a parallel environment with:

¢ single-threaded control
¢ a global namespace

e loosely synchronous execution.

By this we mean a single program, defining operations on arrays whose elements
are distributed across processors by the compiler. An implementation may allow
processors to operate asynchronously but many program constructs will force
synchronisation - for example computation of a sum of all array elements. A
data parallel compiler (or environment) would provide some basic functionality
to enable a wide range of algorithms to be efficiently implemented. A data parallel
language should provide most — if not all — of the following functionality:

whole-array elemental operations For examplea = b + 2%c where a, b and
c are arrays.

array sections The ability to refer to subsets of an array: a row or column for
example.

conditional operations The ability to operate on a set of array elements based
on conditions on array elements or the value of logical masks. This allows
operations like taking the inverse of a selection of non-zero elements within
an array.

reductions For example a sum operation that adds together all elements in an
array.

shifts The ability to shift elements along given axes of an array. This is very
important for stencil operations which find applications in image processing
and solution of differential equations for example.

general communication For example sending data from a vector into specified
elements of a 3-dimensional array.

parallel prefix/suffix operations For example a running total operation.

control over data layout The ability to control how data is distributed among
the processors and to control the alignment of objects to minimise commu-
nication.

Notice that these are high-level operations which can be implemented efficiently.
It is much harder for a compiler to parallelize an equivalent set of loops defining
operations on individual array elements.

As data parallel languages were developed, more and more features from the
list above became available. The earliest data parallel languages probably relate
to the ILLIAC IV[4] machine around 1973. IVTRANI9] for example was based
on FORTAN and had a parallel DO construct (DO FOR ALL) which could be
used in conjunction with IF to express conditional operations in parallel. It was
also possible to express a preferred axis for computation as a way to give the
compiler a hint as to how data should be distributed for minimal communication.
In the same year a data-parallel ALGOL 60 based language Glypnir[10] also had
array-like expressions and a parallel IF. However the parallel objects were so
called Super Words (swords) which were constrained to match the machine size
(number of processors). Later, in 1979 a Pascal based language, Actus[11], added
circular and end-off shifts (rotate, shift) and some reductions (and,all) to define
a more complete set of operations.

More recently a number of data parallel languages have emerged which are
quite neat extensions of serial languages. Some examples being: Parallel Pascal[12]
(NASA MPP, 1983), Fortran-Plus enhanced[13] (AMT DAP, 1990) and Connec-
tion Machine C*[14] (Thinking Machines, 1990).

Although a number of languages were available at the start of the 1990s there
were too many dialects and also features which were machine specific. This meant
that users could be tied to one manufacturer and prospective users were less keen
to learn a particular language. In an effort to introduce some standardisation
the High Performance Fortran Forum was formed with a mission to define a data
parallel Fortran standard.

3 The High Performance Fortran Forum

The discussions on a High Performance Fortran standard were started at Super-
computing ‘91 where Digital Equipment Corporation had organised a discussion
meeting for interested parties. The first HPFF meeting proper was held in Hous-
ton, Texas in January 1992 and was attended by 130 people. Detailed work began
in March when a working group of approximately 40 people started fleshing out a
standard with the intention to finish by January 1993. A further eight meetings
were held during 1992 leading to the publication of the HPF Specification v1.0
in May 1993[8].

The working group contained members from industry, universities and (US)
government laboratories. A list of affiliations of those who were present at more
than two meetings is given in table 1. A wider discussion was facilitated by

Alliant Computer Systems Corporation Meiko, Inc.

Amoco nCUBE, Inc.

Applied Parallel Research Ohio State University
Archipel Oregon Graduate Institute
Convex The Portland Group, Inc.
Cornell Theory Center RIACS

Cray Research, Inc. Rice University

Digital Equipment Corporation Schlumberger

Fujitsu Shell

GMD SUNY Buffalo

Hewlett Packard SunPro, Sun Microsystems
IBM Syracuse University
ICASE Technical University, Delft
Intel Supercomputer Thinking Machines

Lahey Computer Unified Technologies
Lawrence Livermore National Laboratory University of Stuttgart
Los Alamos National Laboratory University of Southampton
Louisiana State University University of Vienna
MasPar Computer Corporation Yale University

Table 1: Representation at more than two HPFF meetings

the creation of a mailing list for those interested in the work in progress. The
HPFF has no official connection with recognised standards bodies. Work on
Fortran standardisation is undertaken by the ANSI X3J3 committee which is
effectively under directions from an international group WG5 (more formally
[SO/IEC JTC1/SC22/WG5). Some members of X3J3 were also active within
the HPFF and hence there was informal contact between the two groups.

The HPFF set out to define a language to address the following goals:

e to support the data parallel programming style

¢ to achieve top performance on MIMD and SIMD machines with non-uniform
memory access costs (and at the same time not be detrimental to perform-
ance on other machines.)

e to support code tuning on various architectures.

In addition, some secondary goals were to: maintain compatibility with ex-
isting standards (particularly Fortran 90), achieve simplicity, and define open
interfaces to other languages and programming styles. The task of the HPFF
was perhaps made easier since there was a wealth of existing work on data par-
allel Fortran issues. Furthermore the recently finalised Fortran 90 standard[15]
included a significant set of array features which form the core of a data parallel
language. Other influences on the development of HPF were (in no particular or-
der): various compiler projects by Compass Inc., Connection Machine Fortran[16]
(Thinking Machines), Cray MPP programming model[17], Fortran 77D[18] (Rice
University), Fortran 90D (Syracuse University) and Vienna Fortran[19] (Vienna
University).

The HPF standard was based on Fortran 90 with the addition of features
targeted at array distribution, new data parallel features and additional intrinsic
and library functions to support efficient use of parallel architectures.

Some features — parallel 1/O and elemental pure procedures for example —
were not included in the standard because agreement could not be reached on
them. These features are documented in the High Performance Fortran Journal
of Development v1.0 which is available from the HPFF World Wide Web server
(see section 7.)

The standard was announced at Supercomputing ‘92 where an initial draft
was distributed. The High Performance Language Specification, version 1.0[8]
was produced in May 1993 and made available by FTP from a number of sites
(see section 7.)

4 The HPF Language

High Performance Fortran is based upon the Fortran 90[15] programming lan-
guage. Fortran 90 includes the FORTRAN 77 language and adds many new

features which include:
e Array operations
e Improved facilities for numeric computation
o User-defined data types

New control constructs

Facilities for modular data and procedure definition

e New source form

e Optional procedure arguments and recursion
e Dynamic storage allocation

o Pointers.

As noted previously the (then relatively new) Fortran 90 standard made an ideal
basis for HPF. In particular, the Fortran 90 standard was extended by the defin-
ition of new directives, language syntax and library routines. Some restrictions
were necessary in order to deal with the linear memory model inheritance of some
Fortran 77 codes.

HPF extended Fortran 90 in the following ways. There is support for con-
trolling the alignment and distribution of data on a parallel machine. New data
parallel constructs are added. An extended set of intrinsic functions and a stand-
ard library provide much useful functionality at a high level of abstraction. EX-
TRINSIC procedures standardise the interface with other languages or styles and
there are directives to address some sequence and storage association issues.

We now look in more detail at these elements of HPF.

4.1 Array Mapping

In any parallel programming environment it is crucial that the programmer have
control over the layout and distribution of data. Compiler technology is not
advanced enough to enable data mapping decisions to be fully automated and at
the same time yield acceptable performance.

The HPF model for data mapping is illustrated in figure 1.

Arrays or Group of Abstract Processors Physical
other objects Aligned objects as rectilinear mesh Processors
ALIGN DISTRIBUTE
REALIGN REDISTRIBUTE

Figure 1: HPF data mapping model

The essential idea is that the relative alignment between two data objects may
be defined — typically by relations involving array elements. A group of aligned
objects (arrays) are then distributed onto an abstract rectilinear grid of processors.
The mapping of abstract to physical processors is implementation dependent.
In figure 2 the arrays A and B are aligned with respect to each other so that
A(I+1,J+1) and B(I,J) are aligned. The ALIGN directive is used to specity
the alignment between objects. In figure 3 we show some potential distributions
of the arrays A and B onto a set of 4 (abstract) processors. We are displaying
axis 1 vertically and axis 2 horizontally. For the distribution (BLOCK,*) axis 1

REAL A(16,16),B(14,14)

'HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

Figure 2: Array Alignment

I,
.

.

(BLOCK,*) (*,BLOCK)

-

P-1234123412341234

o

(BLOCK,BLOCK) (*,CYCLIC)

Figure 3: Array distribution

10

is block distributed among the processors and all elements of axis 2 are local to
each processor. The situation is reversed for the (*,BLOCK) distribution. With
both axes block distributed (BLOCK,BLOCK) then each quadrant of the array A
is distributed to a different processor. Cyclic distributions are also possible and
the final example shows a cyclic distribution on axis 2. In this case each element
along axis 2 is distributed to a different processor in sequence. Hence neighbouring
elements along axis 2 are distributed to different processors. The distribution is
defined by a directive, for example:

'HPF$ DISTRIBUTE A(*,BLOCK)

One example where a cyclic distribution would be useful is Gaussian Elimina-
tion. This method operates progressively on smaller blocks of an array. With
a block distribution only a few processors (maybe only one) would be in use at
some stages. It would not be sensible to cyclicly distribute an axis if many shift
operations were required on it since that would involve maximal communication
between processors.

There are a number of more complex forms to the ALIGN and DISTRIBUTE
directives but we will not consider them further. It is also possible to align arrays
onto an abstract index space, a template, rather than allocating an array merely to
define an alignment. Again we will not consider this further. There are dynamic
forms of the alignment and distribution directives (REALIGN, REDISTRIBUTE)
so that data mappings can be changed during execution of a program.

It is also possible to specify a processor arrangement to be the target of
a distribution. Consider the code below where the PROCESSORS directive is

introduced and we assume that 6 physical processors are available.

REAL A(16,16),B(14,14)
'HPF$ ALIGN B(I,J) WITH A(I+1,J+1)
'HPF$ PROCESSORS P (NUMBER_OF_PROCESSORS()/3,3)
'HPF$ DISTRIBUTE A(CYCLIC,BLOCK) ONTO P

As before, the arrays A and B are aligned with respect to each other. Then we
define a two dimensional abstract grid of processors P,; for + = 1,2;; = 1,2,3.
NUMBER _OF PROCESSORS is a system enquiry function returning the actual number
of processors available. In this example the elements of A are distributed so that:

A(1:15:2,:) +— processors P(1,1:3)
A(2:16:2,:) +— processors P(2,1:3)

Figure 4 shows which elements of A are mapped to different processors. Again we
have axis 1 vertically and the highlighted areas within the arrays A,B correspond
to an assignment to processor P(1,2). As noted previously the mapping from
abstract to real processors is implementation dependent. However it is guaranteed
that array elements mapped to the same abstract processor will be mapped to
the same physical processor. In HPF it is also possible to define a mapping to

11

1 72
i L

Figure 4: Array distribution A(16,16) to array of processors P(2,3)

a scalar processor, this could be useful for data that need not be distributed.
The implementation may assign this data to a control processor (if the target
architecture is a SIMD machine), a particular processor in a MIMD machine or
even replicate to all processors in a MIMD machine.

Another issue is the consideration of data mapping across procedure bound-
aries. Fortran compilers typically only compile one program unit at a time and
hence cannot decide globally on distributions. The programmer must ensure con-
sistency between the distributions of actual and dummy arguments if excessive
remapping is not to occur. There are facilities in HPF to inherit distributions
from actual arguments. It is also possible to use interface blocks to give the
compiler enough information so that arguments can be efficiently remapped on
invocation of a subprogram.

In summary, HPF has a flexible model to describe the mapping of data to
processors and powerful directives to support this model.

4.2 Data Parallel Constructs

The array features of Fortran 90 form a basis for expressing collective operations
on many array elements. For example consider the routine below which scales a
matrix by its Frobenius norm:

SUBROUTINE SCALE(A)

REAL, DIMENSION(:,:) :: A
'HPF$ DISTRIBUTE A(BLOCK,BLOCK)
REAL FNORM

FNORM = SQRT(SUM(A*A))
IF (FNORM>0.) A=A/FNORM

END

12

As well as array assignment, masked assignment and array sectioning, there are
constructs to spread arrays along extra dimensions, permute array subscripts,
shift array elements and more. However the array assignment statement in For-
tran 90 has a (sensible) restriction that the shapes of the right and left hand
sides of the assignment must be conformable (similarly for expressions). HPF
introduces the FORALL statement which can express a richer set of assignments
without this restriction. Interestingly, the FORALL statement was proposed for
Fortran 90 (then 8x) but was dropped. The next revision of Fortran is expected
to reintroduce it as a standard feature.

4.2.1 FORALL

The FORALL statement and corresponding block construct express collective as-
signments (optionally masked) defined in terms of array subscripts. For example
the following statement

FORALL(i=1:m,j=1:n) A(i,j) = i+j

defines the assignment to A at all index values in the range specified. Similar to
array assignment, the FORALL expression is completely evaluated at all active
index positions before assignment to the left hand side. In this case the equivalent
fortran 90 code

A = SPREAD((/(i=1,m)/), DIM=2, NCOPIES=n) + &
SPREAD((/(i=1,n)/), DIM=1, NCOPIES=m)

is more cumbersome. This is typical when the right hand side contains the value
of the index variables rather than them appearing only as subscripts. Further
examples of a more complex nature are:

FORALL(K=1:N, A(K,K).ne.0DO) D(K) = 1DO/A(K,K)

FORALL(I=1:M,J=1:N)
AB(I,J) = A(I)*B(J)
V(I,J) = SUM(V,MASK=(C==C(I,J)))
END FORALL

FORALL (K=1:N) S(K) = SUM(A(:K))

In the first example we assign the reciprocal of the diagonal elements of A to a
vector D. Note the use of a scalar mask expression to control which elements are
assigned. Secondly, the outer product of A and B is assigned to AB. The next
statement shows just how complex things can become. Here the elements of V
are assigned to the sum of all elements of V corresponding to identical values of
an array C. The equivalent Fortran 90 expression is more complicated. Finally
the FORALL statement can implement a parallel prefix operation and here we
accumulate partial sums in S.

13

There are restrictions on the FORALL statement so that a compiler can pro-
duce code that executes in parallel (or alternatively that operates on the index
positions in any order.) In particular, multiple values may not be assigned to the
same atomic data object. For example the statement

FORALL(i=1:n) A(p(i)) = B(3)

is not standard conforming if p contains repeated values.

It is possible to use user-defined functions in the body or mask expression of
the FORALL but the functions must meet certain requirements to ensure that
they are free of side effects. HPF introduces the PURE attribute to be used in
defining such functions.

4.2.2 The PURE Attribute

A pure function is guaranteed to be free of any side effects in that it only returns
a value and does not modify global data, data mappings, pointer associations or
perform [/O. Pure subroutines may modify INTENT(OUT) or INTENT(INOUT)
arguments. A procedure must be pure if used in the mask expression or body
of a FORALL statement or construct, and if used within the body of a pure
procedure or as an actual argument in a pure procedure reference. There are
some syntactic constraints on the definition of a pure procedure which follow
from the restrictions above. As an illustration consider

PURE REAL FUNCTION vol(h,w,d)
REAL h,w,d
INTENT(IN) :: h,w,d

vol = h*w*d
END FUNCTION vol

and note that this routine could then be used in the statement
FORALL(i=1:n) v(i,:) = vol(h(i),w(i),d(d))

under the condition that the interface for vol was explicit (for example there was
an interface block for vol).

4.2.3 The INDEPENDENT Directive

For a compiler to fully optimize code it is essential that it can recognise depend-
encies between objects in a program. This is particularly important for loops
(DO and FORALL) since execution in a particular order or indeed in parallel
can yield significant performance benefits. The HPF INDEPENDENT directive
is a way for the programmer to assert that there are no interactions between
computations for different active index values or alternatively that the loop may
be executed in any order or in parallel.

14

This is particularly useful where compiler analysis alone is not enough. For
this code

IHPF$ INDEPENDENT
DO i=1,n
B(index(i)) = A(1)
END DO

the assertion is that there are no repeated values in index. If there were then
the result would depend on the order of evaluation and might even vary from run
to run in a parallel environment. Note that the INDEPENDENT directive does
not change the meaning of the code. There is also a more general form of the
directive which allows the declaration of temporaries in the enclosed loop(s).

4.3 Intrinsic and Library Procedures

Fortran 90 has a rich set of intrinsic procedures. To these HPF adds three new
intrinsic functions, extends two existing functions and defines a library module.

4.3.1 Intrinsic Functions

The Fortran 90 intrinsic functions MAXLOC and MINLOC are extended by the addi-
tion of an optional DIM argument:

MAXLOC(ARRAY[,DIM] [,MASK])
MINLOC(ARRAY[,DIM] [,MASK])

(The []s denote optional arguments.) A consequence of this extension is that the
second argument may appear ambiguous when keyword arguments are not used.
For example with

L1
L2

MINLOC(C,2)
MINLOC(C,C>2)

the second arguments define a dimension and mask respectively. The ambiguity
is resolved by noting the types of the arguments.
The system enquiry intrinsic functions

NUMBER _OF PROCESSORS ([DIM])
PROCESSORS_SHAPE()

return the physical number of processors and shape of the processor array in
the machine. These functions may be used wherever Fortran 90 requires a
specification-expr and hence may be used in array declarations or HPF directives.

HPF also defines an additional intrinsic function ILEN which returns the num-
ber of bits required to store an integer value.

15

4.3.2 The HPF_LIBRARY Module

HPF defines a library of functions and subroutines which contains a large number
of routines useful for expressing data parallel algorithms at a high level. There
are also routines for querying the actual alignment and distribution of arrays at
run-time. The routines are collected in a library module (this must be provided
by an HPF implementation.) To access these routines a USE statement is required
to place the definitions in scope. Note that these routines are not intrinsic (and
hence automatically known to the compiler) because the flexibility of varying
argument lists and type specific behaviour was deemed unnecessary.

The rationale behind the provision of many of these routines is that the op-
erations are essential components in a wide range of data parallel algorithms. It
is to be expected that vendor supplied implementations will be much more effi-
cient than a user implementation which will necessarily be optimized only for a
particular architecture.

The routines available in the HPF_LIBRARY module are briefly described

below. For more detail, refer to the HPF documentation mentioned in section 7.

Mapping inquiry subroutines

The mapping of arrays is done by an implementation taking into account any
advisory directives in the program. The routines HPF_ALIGNMENT, HPF _TEMPLATE
and HPF DISTRIBUTION are available to enquire about the mapping at run-time.

Bit manipulation functions

These bit manipulation functions are provided

LEADZ(I)
POPCNT(I)
POPPAR(I)

and return the number of leading zero bits, the number of one bits and the bit
parity of the integer I respectively.
Array reduction functions

Additional reduction functions are defined which extend the set already available
in Fortran 90 (ANY, ALL, COUNT, PRODUCT, SUM, MAXVAL and MINVAL). The new
routines are IALL, IANY, IPARITY and PARITY. These correspond to the binary
operations TAND, IOR, IEOR and .NEQV. respectively.

Array combining scatter functions

These routines generalize the assignment

Y(V) = X

16

to allow repeated values in the vector V. Values sent to the same array element are
combined by a combiner XXX where XXX € (ALL, ANY, COPY, COUNT, IALL, IANY,
IPARITY, MAXVAL, MINVAL, PARITY, PRODUCT, SUM). The functions have the form

XXX_SCATTER (ARRAY,BASE,INDX1,...,INDXn,MASK)

where XXX specifies the combiner. Essentially these routines return a result that
is equal to BASE combined with some combination of elements from ARRAY. These
elements are sent to destinations defined by the coordinates in the INDX arrays.

Array prefix and suffix functions

A prefix function — or scan — applies an operation along a vector such that any
element is the result of operations on preceding elements. For example:

SUM_PREFIX((/1,2,0,1/)) = (/1,3,3,4/)

The same combiners are available as for the scatter functions and a number of
options control the prefix or suffix operation:

XXX _PREFIX (ARRAY,DIM,MASK,SEGMENT ,EXCLUSIVE)
XXX_SUFFIX(ARRAY,DIM,MASK,SEGMENT ,EXCLUSIVE)

The suffix function operates in a different direction to the prefix operation: the
result at a given position depends on succeeding elements. The scan is applied
along a particular dimension of the array ARRAY with active elements defined by
the mask. The scan may also be segmented. If the (optional) DIM argument is not
present then ARRAY is treated as a vector with elements taken in array-element
order.

Array sorting functions

Two functions are available to produce grading permutations of arrays. These
can operate on whole multidimensional arrays or along particular dimensions of
arrays

¢ GRADE DOWN(ARRAY,DIM)

e GRADE UP(ARRAY,DIM)

4.4 Extrinsic Procedures

Extrinsic routines are provided by HPF to meet the goal of providing a standard
interface to other programming languages or styles. The mechanism for doing
this is to define the type of extrinsic procedure in an interface block by using the
EXTRINSIC prefix to the function or subroutine definition.

17

For example imagine that an implementation provided a mechanism to call
routines written in a hypothetical data parallel C which we will call Performance
C. We could define the interface for such a routine as follows

INTERFACE

EXTRINSIC(PC) FUNCTION COMPRESS(V,N)
INTEGER, DIMENSION(:) :: V
INTEGER COMPRESS

'HPF$ DISTRIBUTE(BLOCK) :: V

INTENT(INOUT) :: V
INTENT(IN) :: N
END FUNCTION COMPRESS

END INTERFACE

HPF defines two choices for the extrinsic-kind-keyword (which is the ‘argument’
to EXTRINSIC), namely HPF and HPF_LOCAL. HPF is merely the standard
interface to HPF routines. However the HPF_LOCAL extrinsic interface is an
interface to an SPMD model of execution where multiple copies of the routine ex-
ecute (one to each processor) and these routines only have access to data mapped
to them via the dummy arguments. The local routines are free to utilize message
passing libraries if desired. On return from the subroutine all processors are syn-
chronised. There are however restrictions on what the local routines can do —
for example not remapping data that is returned. A set of routines to support
this model are available in an HPF_LOCAL_LIBRARY module. Note that the
HPF_LOCAL interface is not a proper part of HPF since it cannot be provided on
some machines. However, if the HPF_LOCAL interface is implemented it should
be done so as described in the HPF standard.

4.5 Sequence and Storage Association

There are two concepts in the Fortran language which grew out of an assumption
of a linear memory model, namely sequence and storage association. Loosely
defined these are

Sequence association: The mapping of array elements to a linear order: first
axis varies fastest. This defines how array elements are associated across
procedure boundaries when the shapes of the actual and dummy arguments

differ.

Storage association: The association of two or more objects that occurs when
two or more storage sequences share or are aligned with one or more storage
units.

Much old code uses these features of the language. However they present severe
difficulties for an implementation where data are mapped to a set of processors.

HPF provides a SEQUENCE directive that can define variables and COMMON

18

blocks to have the sequential property. Data declared sequential may be safely
sequence and storage associated.
This is the one area where an existing Fortran code may not work with an

HPF compiler as SEQUENCE directives may need to be applied. This is because
all data is considered mappable by default.

4.6 Subset HPF

One of the goals of the HPFF was to promote early adoption of HPF. As an aid
to this a subset standard was defined in the hope that subset compilers could
soon be produced. This is understandable, since the effort involved in producing
a full HPF implementation is considerable, not least because HPF contains all of
Fortran 90.

Many Fortran 90 features are included in the subset, for example nearly all
of the array features and intrinsic functions. Rather than give a comprehensive
list here it will suffice to mention the important features omitted from the subset
which are:

o The REALIGN, REDISTRIBUTE and DYNAMIC directives
e The PURE function attribute

o The FORALL construct

e The HPF_LIBRARY module

e The EXTRINSIC function interface

o The following Fortran 90 features: free source form, pointers, the TARGET
attribute, derived types and operators, modules and new 1/O features.

It is interesting to note that the idea of a subset standard is by no means a new
one. The ISO 1539-1980(E) standard (Fortran 77) defined a subset FORTRAN.

The usefulness of the subset HPF definition is diminishing now that imple-
mentations of HPF are available — albeit with varying feature lists.

5 Current Implementations

The implementation status of HPF (at the time of writing) is summarised in
table 2.

A number of companies have announced products which are either available or
in beta test. Others have announced that they are actively working on an HPF
implementation. Finally there are the companies who have expressed an interest
in HPF (Cray Research, HP and Silicon Graphics attended HPFF meetings) but

have not announced an effort for various reasons. Other bodies are also known

19

Announced Product

Applied Parallel Research Digital

Hitachi IBM

Intel Meiko

Motorola NA Software

NEC Pacific Sierra Research

The Portland Group
Announced Effort

ACE Hewlett-Packard

Fujitsu Lahey

MasPar Nag

nCUBE Thinking Machines Corporation
‘Interested’

Cray Research Edinburgh Portable Compilers

Silicon Graphics Sun

Table 2: HPF implementation status

to be working on HPF or have related projects. For example the JISC funded
work at the University of Southampton (UK) and the Adaptor tool from GMD,
Germany.

The first HPF products to become available were from Applied Parallel Re-
search and The Portland Group, Inc. (PGI). Both companies offer portable
products that target a wide range of architectures — from workstations and
clusters to massively parallel supercomputers. Initial releases were targeted at
the HPF subset but recent releases have increased in functionality. As well as
basic compilation, there is provision for performance analysis of the parallel ap-
plication.

Digital were the first to announce a full Fortran 90/HPF compiler (called
DEC Fortran 90 v1.0). This was initially targeted at DEC OSF1/AXP systems.
An interesting development has been DEC’s announcement that the source and
object code of the compiler can be made available selectively to other compiler
developers.

Since HPF compilers are under constant development this report will no longer
attempt to give detailed information on specific products. (In fact keeping table 2
current is bad enough because the status of the companies changes faster than the
HPF implementations.) The compiler vendors should be approached for definitive
information on their products.

20

6 Current Developments

This section covers the work undertaken by the HPFF from early 1994 to date.
Note that the description of current work is likely to change as proposals progress
through the HPFF meetings.

In January 1994 a meeting was held in Houston, Texas to formally initiate a

High Performance Fortran Forum II effort. This was followed by further meetings
in August and October. The stated charter for HPFF ’94 was:

1. CCI - Corrections, Clarifications, Interpretations including clarifying the
ways that HPF 1.0 already supports course-grained parallelism — e.g. in-
dependent loops.

2. Encourage “Industrial Strength” Implementations:

e More notes to implementors
o Collect and publish practical programming kernels

e Support establishment of a validation suite

3. Identify, flesh out requirements for HPF 2.0 but don’t “develop” these re-
quirements yet. Candidates are: parallel 1/0, irregular grids, additional
tasking support.

4. Produce an HPF 1.X document.

Significant work was undertaken within 1994 to address these goals. A status
meeting on HPF issues was held at Supercomputing ’94 in Washington, D.C.
A document “HPF-2 Scope of Activities and Motivating Applications” was dis-
tributed there and describes the then status of HPF activities and the set of
motivating applications. The document also contains numerous references to re-
lated work. It is available by ftp from the host hpsl.cs.umd.edu in the file
pub/hpf bench/hpf2.ps.
The HPFF is still active and has the following objectives for 1995/1996:

1. To produce, by November 1996, a High Performance Fortran version 2.0
including additional features that broaden the applicability of HPF, and
whose implementation can exploit successful research experience.

2. To provide correction, clarification, and interpretation of the current lan-

guage standard, HPF 1.1.
3. To encourage high quality implementations.

Details on current HPFF efforts are available from the HPFF WWW pages (see
section 7).

The following sections give information on work completed or in progress.
Note that the sections do not correspond directly to working groups within the

HPFF.

21

6.1 Future HPF Standards

Two versions of HPF will be defined: HPF 1.2 and HPF 2.0. HPF 1.2 is essen-
tially HPF 1.1 with additional clarifications. HPF 2.0 is formed by most of the
HPF 1.1 functionality but with the exception of the dynamic distribution support
and mapping of sequential arrays and with a requirement for explicit interfaces
in situations where the callee would have to remap data. It will contain an
Annex of Approved Extensions which include the dynamic distribution support.
The Approved Extensions will probably contain the following sections: general
reductions, mapped pointers, tasking, ON directive, mapping of derived types
and derived type components, asynchronous /0, generalized block distribution,
RANGE, shadow widths, interoperability with C, extrinsic HPF_SERIAL and
HPF_LOCAL, new SORT HPF library routine and an extended TRANSPOSE
intrinsic. HPF 2.0 implementations do not have to implement the Approved
Extensions in order to conform to the specification.

Note that only some of these proposals are noted in the subsequent sections,
see the HPFF minutes (available from the Web page) for more information.

6.2 Corrections, Clarifications and Interpretations

The HPF 1.0 standard was produced in a relatively short time and contained a
number of errors and ambiguities. The groups within HPFF have been working to
define corrections to the HPF standard, to clarify points that are not explicitly
covered and to provide interpretations of the standard. A CCI document is
available from the HPFF WWW pages, this contains details of many questions
submitted to the HPFF for clarification along with related formal replies from the
HPFF. A new revision of HPF, High Performance Fortran Language Specification
version 1.1[20], was made available in November 1994.

6.3 Tasking Issues

HPF does not address tasking issues. One group is considering how tasking
directives (parallel section definitions for example) could be combined with HPF
data distribution. Existing work in this area are Convex SPP directives and the
ANSI X3H5 group. The current proposal defines TASK REGIONs and assumes
mechanisms which allow distribution of variables to processor subgroups and
direct execution on groups of processors for specific blocks of code.

6.4 Implementations

One group keeps track of the implementation status of HPF and intends to com-
pile a compendium of papers and essays. The hope is that implementors will
share experience so that quality implementations are quickly available. For more
details on the implementation status of HPF see section 5.

22

6.5 Distribution of Data and Computation

The main criticism of data parallel programming and of HPF has been that there
is little support for irregular data distribution. To address this, more general data
alignments and distributions can be defined and these are under consideration in
the light of the applications base. Current proposals define generalised block
distributions that would allow block distributions of varying block size or more
general mappings of array elements (within an axis) to processors. It will also be
possible to distribute data to a subset of the processors declared in a PROCESSORS
directive.

Another issue is that it is not possible to specify where a computation is
performed. A new directive (ON) is proposed that allows the programmer to
specify that a computation should be performed by a specified set of virtual
processors.

6.6 1/0 Issues

Significant progress on 1/O issues was made during the development of HPF 1.0
but no new IO features were included in the standard — see the Journal of
Development for more information. Recent work has concentrated on the impact
of parallel I/O on Fortran standards and a number of recommendations were made
to X3J3 (for example to remove a restriction on file position being a default integer
type which limits file size on some machines.) Other topics under consideration
include: asynchronous /0, checkpoint /restart functions and out-of-core arrays.

6.7 Motivating Applications

The proposed extensions address a lack of functionality in HPF which precludes
an efficient implementation of a number of applications. A set of motivating ap-
plications is being collected so that deficiencies in HPF can be highlighted and
addressed by proposed extensions for HPF-2. The applications and document-
ation are available via anonymous ftp from the site hpsl.cs.umd.edu in the
directory pub/hpf bench. Among the applications are: Barnes-Hut N-body sim-
ulation, EULER 3-D hydrodynamics, Multigrid, Direct Simulation Monte Carlo,
the FFT, Out of Core Matrix Transposition and Sparse LU Factorization.

6.8 Other Issues

Two other proposals relate to Kernel HPF and interoperability with C. Ker-
nel HPF defines a minimal set of HPF features that can be implemented with
maximum efficiency. Kernel HPF will not appear as such in the HPF 2.0 specific-
ation but will be presented as a chapter addressing portability and performance.
The interoperability proposal defines a mechanism by which HPF can call ex-
ternal routines written in C. An interface definition for the external function
gives enough information for the implementation to convert the HPF variables to

23

“equivalent” C variables, performing any type conversion, dereferencing, reorder-
ing or remapping as appropriate.

7 Information Sources

There is a wealth of information available about High Performance Fortran,
mostly in electronic form via the Internet. The HPF standard (v1.0) was pub-
lished in a number of forms, the most accessible printed copy probably being the
publication in the journal Scientific Programming|[8]. A useful book is the “High
Performance Fortran Handbook”[21], published by the MIT press.

On the World Wide Web there is a server containing information on the HPFF
and this is available at the URL http://www.crpc.rice.edu/HPFF/home.html.
These Web pages should be the first point of call for those interested in HPF,
there are pointers to the standard itself, pointers to HPF documentation, details
of HPFF meetings and information on mailing lists.

This document is available in PostScript form from the Related Publications

link on the HPFF Web page.

8 Bibliography
[1] M. Metcalf and J. Reid. Fortran 90 explained. Clarendon, 1990.

[2] J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran 90
Handbook. McGraw-Hill, 1992.

[3] T. M. R. Ellis, I. R. Philips, and T. M. Lahey. Fortran 90 Programming.
Addison Wesley, Wokingham, 1994.

[4] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A.
Stokes. The ILLIAC IV Computer. [EEE Transactions on Computers C—
17(8), 746-757 (1968).

[5] O. A. McBryan. An overview of message passing environments. Parallel
Computing 20, 417-444 (1994).

[6] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming Languages for
Distributed Computing Systems. ACM Computing Surveys 21(3), 261-322
(1989).

[7] F. Bodin, T. Priol, P. Mehrotra, and D. Gannon. Directions in Parallel Pro-
gramming: HPF, Shared Virtual Memory and Object Parallelism in pC++.
ICASE Report No. 94-54, NASA CR No. 194943. Institute for Computer

Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Va. USA, 1994.

24

[8] High Performance Fortran Forum. High Performance Fortran Language Spe-
cification. Scientific Programming 2(1-2), 1-170 (1993).

[9] R. E. Millstein. Control Structures in Illiac IV Fortran. Communications of
the ACM 16(10), 621-627 (1973).

[10] D. H. Lawrie, T. Layman, D. Baer, and J. M. Randal. Glypnir — A Program-
ming Language for Illiac IV. Communications of the ACM 18(3), 157164
(1975).

[11] R. H. Perrott. A Language for Array and Vector Processors. ACM Trans-
actions on Programming Languages and Systems 1(2), 177-195 (1979).

[12] A. P. Reeves. Parallel Pascal: An Extended Pascal for Parallel Computers.
Journal of Parallel and Distributed Computing 1, 64-80 (1984).

[13] Active Memory Technology Ltd, 65 Suttons Park Avenue, Reading, Berks,
RG6 1AZ, UK. Introduction to FORTRAN-PLUS enhanced, 1990. AMT has
been taken over by Cambridge Parallel Processing, check availability with
them.

[14] Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-
1264, USA. C* Programming Guide, 1993.

[15] International Organisation for Standardization and International Electro-

technical Commission. Fortran 90 [ISO/IEC 1539:1991 (E)], 1991.

[16] Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-
1264, USA. CM Fortran Language Reference Manual, 1994.

[17] D. M. Pase, T. MacDonald, and A. Meltzer. MPP Fortran Programming
Model. Cray Research, Inc., 655F Lone Oak Drive, Eagan, Minnesota 55121,
1994.

[18] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran D Language Specification, Department of Computer Science
Technical Report. Rice University., Houston, Tx. USA, 1991.

[19] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.
Scientific Programming 1(1), 31-50 (1992).

[20] High Performance Fortran Forum. High Performance Fortran Language Spe-
cification v1.1. available at
http://www.erc.msstate.edu/hpff/hpf-report-ps/hpf-vil.ps , 1994.

[21] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E.
Zosel. The High Performance Fortran Handbook. The MIT Press, Cambridge,
Ma., USA, 1994.

25

